SECRETARÍA DE EDUCACIÓN PÚBLICA

SUBSECRETARÍA DE EDUCACIÓN BÁSICA

PLANEACIÓN DIDÁCTICA

Ciclo Escolar 2025-2026

Educación Básica • Plan y Programas de Estudio

DATOS DE LA INSTITUCIÓN

DATOS DEL DOCENTE

Nueva Escuela Mexicana
Excelencia Educativa Equidad e Inclusión

Planeación Didáctica de Primer Grado de Secundaria


Información Básica del Proyecto

Nombre del Proyecto

Extensión del significado de las operaciones y sus relaciones inversas

Asunto o Problema

Los alumnos tienen dificultades para aplicar la regla de los signos en multiplicación y división.

Tipo

Por Fases Metodológicas (Aprendizaje Basado en Indagación - ABI con enfoque STEAM)

Grado

Primer Grado de Secundaria (12-15 años)

Escenario

Aula y entorno cercano (escuela y comunidad)

Metodología(s)

Aprendizaje Basado en Indagación (ABI), Enfoque STEAM

Ejes Articuladores

Pensamiento crítico, Resolución de problemas, Argumentación científica, Trabajo colaborativo

Contenidos y PDAs por Materia

Ver descripción en la sección siguiente


Contenidos y PDAs Seleccionados por Materia

Matemáticas

Contenidos

PDA (Producto de Desempeño Auténtico)

Extensión del significado de las operaciones (suma, resta, multiplicación, división) y sus relaciones inversas.

Reconoce y explica el significado de las operaciones con signos y sus relaciones inversas al resolver problemas contextualizados.

Propiedades de las operaciones: conmutativa, asociativa, distributiva.

Argumenta y demuestra cómo estas propiedades aplican en diferentes situaciones, incluyendo operaciones con signos.

Jerarquía de operaciones y símbolos de agrupación.

Aplica correctamente la jerarquía y símbolos al realizar cálculos con números con signo, justificando sus pasos.


Desarrollo de la Planeación por Fases Metodológicas (ABI - STEAM)

Fase/Acción

Descripción

Actividades Sugeridas - Integrando Contenidos y PDAs

Fase 1: Introducción

Planteamiento del problema y motivación

  • Dinámica de inicio: Presentar un reto visual y contextualizado: "¿Por qué en algunos casos multiplicar números con signos nos confunde?" (ejemplo: multiplicar temperaturas en diferentes ciudades).
  • Diálogo inicial: ¿Qué saben acerca de los signos en operaciones? Registro en mapa conceptual colaborativo.
  • Presentar un video breve que ilustre errores comunes al aplicar reglas de signos, promoviendo la reflexión. (Enfoque STEAM: integrar conceptos matemáticos con ejemplos del mundo real).

Fase 2: Preguntas de indagación

Formular hipótesis y preguntas clave

  • Lluvia de ideas: ¿Qué creen que pasa cuando multiplicamos o dividimos números con signos?
  • Formulación de hipótesis: ¿Creen que hay una regla que explique estos casos?
  • Actividad de investigación rápida: Revisar ejemplos del libro de Saberes y Pensamiento Matemático (pág. X), donde se explica el significado de las operaciones con signos, y discutir en grupos.
  • Mapa conceptual colaborativo: ¿Cómo se relacionan las operaciones y sus relaciones inversas?

Fase 3: Diseño y experimentación

Recopilación de datos, experimentos y análisis

  • Experimento práctico: Usando materiales caseros (papel, fichas, números escritos), simular multiplicaciones y divisiones con signos, observando resultados y registrando patrones.
  • Simulación digital: Crear un juego interactivo en línea o aplicación sencilla (ejemplo: GeoGebra) que permita experimentar con diferentes combinaciones de signos.
  • Análisis de casos: Estudiar ejemplos del libro de Saberes (pág. X) y resolver problemas en equipo, justificando cada paso.
  • Actividad STEAM: Diseñar un prototipo (puede ser una infografía o un video corto) que explique las reglas de signos en multiplicación y división, integrando conceptos matemáticos y tecnológicos.

Fase 4: Conclusiones

Interpretación, discusión y comunicación

  • Mesa redonda: Compartir hallazgos, argumentar sobre las reglas descubiertas, y contrastar hipótesis iniciales con los resultados.
  • Presentación creativa: Cada equipo crea una infografía digital o un podcast explicando las reglas de signos, haciendo énfasis en la lógica y relaciones inversas.
  • Reflexión escrita: ¿Qué aprendieron? ¿Cómo resolvieron las dudas? ¿Qué les sorprendió? (auto y coevaluación).

Fase 5: Evaluación y aplicación

Reflexión, extensión y transferencia

  • Resolución de problemas contextualizados: Problemas que impliquen operaciones con signos en situaciones cotidianas (ej.: finanzas, temperaturas, deportes).
  • Debate: ¿Por qué es importante entender las relaciones inversas y las propiedades en la vida real?
  • Proyecto final: Elaborar un cortometraje, presentación o cartel digital que explique las reglas de signos y sus relaciones inversas, integrando conocimientos matemáticos y tecnológicos.
  • Evaluación formativa: Cuestionarios, discusión guiada y revisión de los prototipos y productos finales.

Producto de Desempeño Auténtico (PDA)

Creación de un "Manual interactivo digital" que explique las reglas de signos en multiplicación y división, incluyendo ejemplos, gráficos, y situaciones cotidianas. Este manual será elaborado en equipo, integrando conceptos matemáticos y tecnológicos, y presentado a la comunidad escolar mediante una exposición virtual. El producto reflejará la comprensión profunda, argumentación, y aplicación de las relaciones inversas y propiedades de las operaciones con signos.


Sugerencias de Evaluación

  • Autoevaluación: ¿Qué descubrí sobre las reglas de signos? ¿Pude explicar claramente las relaciones inversas? ¿Qué dificultades tuve y cómo las resolví?
  • Coevaluación: ¿En qué aportó mi compañero al equipo? ¿Mi explicación ayudó a otros a entender mejor las reglas?
  • Evaluación formativa: Observación durante actividades, participación en debates, calidad de los prototipos y productos digitales, resolución de problemas y argumentación.
  • Evaluación sumativa: Uso de la rúbrica para calificar el manual interactivo y la presentación final, considerando comprensión, creatividad, argumentación, y aplicación.

Rúbrica de Evaluación del Producto Final

Criterio

Excelente (4)

Bueno (3)

Satisfactorio (2)

Insuficiente (1)

Claridad y precisión en la explicación

La explicación es clara, completa y precisa, con ejemplos adecuados y gráficos explicativos.

La explicación es clara y con algunos ejemplos, pero le falta profundidad en algunos aspectos.

La explicación es confusa o incompleta, con pocos ejemplos o gráficos.

La explicación no es comprensible o está ausente.

Integración de conceptos matemáticos y tecnológicos

Excelente integración, usando tecnología y conceptos matemáticos de forma innovadora.

Buena integración, con uso adecuado de tecnología y conceptos.

Integración básica, con poca innovación o uso limitado de tecnología.

No hay integración clara o uso de tecnología.

Creatividad y diseño del producto

El manual es muy creativo, visualmente atractivo y bien organizado.

Es creativo y organizado, con buen uso de recursos visuales.

Poco creativo, con organización básica.

Sin creatividad ni organización aparente.

Argumentación y justificación

Argumenta con solidez, demostrando comprensión profunda y relaciones inversas.

Argumenta bien, pero con menos profundidad.

Argumentación superficial, con errores o confusiones.

Carece de argumentación o es incorrecta.

Aplicación en situaciones cotidianas

Resuelve problemas contextualizados con precisión y reflexión.

Resuelve problemas con algunas dificultades.

Problemas resueltos parcialmente, con errores.

No logra aplicar los conceptos en situaciones reales.


Este proyecto busca promover en los estudiantes no solo la comprensión técnica de las reglas de signos, sino también su capacidad de argumentación, innovación y aplicación en contextos reales, alineándose con los principios de la Nueva Escuela Mexicana y fomentando un aprendizaje significativo, crítico y creativo.

Descargar Word