SECRETARÍA DE EDUCACIÓN PÚBLICA

SUBSECRETARÍA DE EDUCACIÓN BÁSICA

PLANEACIÓN DIDÁCTICA

Ciclo Escolar 2025-2026

Educación Básica • Plan y Programas de Estudio

DATOS DE LA INSTITUCIÓN

DATOS DEL DOCENTE

Nueva Escuela Mexicana
Excelencia Educativa Equidad e Inclusión

Planeación Didáctica de Primer Grado de Secundaria

Información Básica del Proyecto

  • Nombre: Fracciones a decimales
  • Asunto o Problema: Los alumnos no saben el empleo de números decimales y su conversión.
  • Tipo: Semanal (5 días)
  • Grado: Primer Grado de Secundaria (12-15 años)
  • Escenario: Aula
  • Metodología: Aprendizaje Basado en Problemas (ABP)
  • Ejes Articuladores: Pensamiento crítico
  • Contenidos y PDAs:
  • Matemáticas: Expresión de fracciones como decimales y de decimales como fracciones.
  • PDA: Usa diversas estrategias al convertir números fraccionarios a decimales y viceversa.

Desarrollo de la Planeación Semanal (5 Días)

Lunes

Inicio:

  • Actividad 1: Gancho motivador — Presentar un desafío visual: mostrar imágenes con diferentes objetos (por ejemplo, una pizza dividida en fracciones, una barra decimal, una gráfica de barras) y preguntar: ¿Cómo podemos expresar estas partes?.
  • Actividad 2: Conexión con conocimientos previos — Realizar una lluvia de ideas sobre qué saben acerca de fracciones y decimales, relacionando con experiencias cotidianas (dinero, medicinas, medidas).

Desarrollo:

  • Actividad 3: Investigación guiada — En grupos, explorar cómo se representan fracciones y decimales en diferentes contextos (ejemplo: dinero, medicinas). Uso de tarjetas con fracciones y decimales para convertir entre ambos formatos, apoyados en recursos digitales y manipulables. (Fuente: Libro, Pág. 45-47).
  • Actividad 4: Análisis crítico — Discusión en grupos sobre la importancia de entender ambas formas y cuándo usar cada una, relacionando con situaciones reales y problemas del día a día.

Cierre:

  • Reflexión grupal: ¿Qué aprendimos hoy? ¿Por qué es importante entender la relación entre fracciones y decimales? Se registra en un mural colaborativo.

Martes

Inicio:

  • Actividad 1: Dinámica de reconocimiento — Juego de "¿Qué número soy?" con tarjetas de fracciones y decimales, donde los estudiantes deben emparejar las equivalencias.
  • Actividad 2: Recuperación de conocimientos previos — Preguntas rápidas: ¿Cómo convertirías ¼ a decimal? ¿Y 0.75 a fracción? (Se realiza en pizarras individuales).

Desarrollo:

  • Actividad 3: Investigación y análisis — Cada grupo recibe diferentes fracciones y decimales y realiza la conversión usando estrategias diversas (división, multiplicación, visualizaciones). Argumentan cuál les resulta más sencilla y por qué.
  • Actividad 4: Aplicación práctica — Crear un pequeño "Banco de ejemplos" con diferentes fracciones y decimales, explicando cada conversión en su cuaderno digital o en papel.

Cierre:

  • Compartir ejemplos y explicar en plenaria el proceso que usaron, reforzando la importancia del pensamiento crítico en la elección de estrategias.

Miércoles

Inicio:

  • Actividad 1: Video motivacional — Ver un video breve que muestra situaciones cotidianas donde se usan decimales y fracciones (ej. compras, mediciones). Se realiza una lluvia de ideas para recordar conceptos clave.
  • Actividad 2: Revisión de conceptos — Preguntas orales y discusión en parejas sobre la relación entre fracciones y decimales (ejemplo: 3/4 y 0.75).

Desarrollo:

  • Actividad 3: Proyecto de investigación — En equipos, investigar diferentes métodos para convertir fracciones a decimales: división larga, multiplicación por potencias de 10, uso de tablas. Cada equipo prepara una presentación visual (infografía, video o cartel digital).
  • Actividad 4: Debate crítico — Cada equipo presenta su método, argumentando ventajas y desventajas, promoviendo la reflexión sobre cuál estrategia es más eficiente y en qué contextos.

Cierre:

  • Reflexión escrita individual: ¿Qué estrategia me gustaría dominar mejor y por qué? ¿Qué dificultades encontré?

Jueves

Inicio:

  • Actividad 1: Retos en parejas — Resolver en conjunto problemas complejos que involucren conversiones de fracciones a decimales y viceversa, usando diferentes estrategias. Ejemplo: "Convierte 7/8 a decimal y explica cómo lo hiciste."
  • Actividad 2: Conexión con otras materias — Revisar en Ciencias Naturales cómo se representan mediciones en fracciones y decimales, y en Ciencias Sociales cómo se expresan porcentajes en diferentes formatos.

Desarrollo:

  • Actividad 3: Resolución de problemas reales — Presentar situaciones contextualizadas (ejemplo: calcular descuentos en una tienda, mediciones en recetas) en las que los estudiantes deban convertir entre fracciones y decimales para resolverlos.
  • Actividad 4: Trabajo colaborativo — Crear un "Manual de estrategias" para convertir fracciones en decimales y viceversa, con ejemplos y pasos claros, que puedan compartir con otros grupos.

Cierre:

  • Socialización del manual y discusión sobre qué estrategias consideran más útiles y en qué situaciones.

Viernes

Inicio:

  • Actividad 1: Reflexión motivadora — Presentar un problema integrador: "La tienda de la esquina necesita convertir precios en fracciones y decimales para poner en promoción. ¿Cómo podemos ayudarlos?"
  • Actividad 2: Repaso y autoevaluación — Preguntas rápidas para revisar conceptos: ¿Qué es un decimal? ¿Cómo convertir una fracción en decimal? ¿Qué estrategias usaste?

Desarrollo:

  • Actividad 3: Producto final — Elaborar en equipos un "Plan de conversión" que explique paso a paso cómo convertir fracciones a decimales y viceversa, incluyendo ejemplos y recomendaciones, para presentarlo como un recurso didáctico para otros estudiantes.
  • Actividad 4: Presentación — Cada equipo comparte su plan en una feria digital o física, explicando el proceso y resolviendo dudas.

Cierre:

  • Reflexión final sobre el proceso de aprendizaje, qué estrategias prefieren y cómo aplicarán estos conocimientos en su vida cotidiana.

Producto de Desempeño Auténtico Semanal

Descripción:
Los estudiantes crearán un "Manual de Conversión de Fracciones a Decimales y viceversa", que será un recurso didáctico visual, interactivo y accesible. Incluye explicaciones, pasos, ejemplos, estrategias y aplicaciones en contextos reales. Se presentará en formato digital (video, infografía, presentación) y en papel.

Criterios de evaluación:

  • Claridad y precisión en las explicaciones.
  • Uso correcto de estrategias de conversión.
  • Creatividad y presentación del recurso.
  • Capacidad para aplicar conocimientos en problemas reales.
  • Trabajo colaborativo y participación activa.

Este producto integrará contenidos de matemáticas, habilidades de investigación, comunicación y pensamiento crítico.


Sugerencias de Evaluación Formativa

  • Observación y registros: Durante actividades, registrar participación, estrategias y razonamientos.
  • Preguntas clave: Realizar preguntas que fomenten el análisis y la reflexión, como: "¿Por qué escogiste esa estrategia?" o "¿Qué dificultad encontraste y cómo la resolviste?"
  • Autoevaluación: Al final de cada día, los estudiantes reflexionarán en un diario o ficha: ¿Qué aprendí? ¿Qué me costó? ¿Qué puedo mejorar?
  • Coevaluación: Intercambio de retroalimentación en pares y en grupos, usando rúbricas sencillas que evalúen aspectos como claridad, argumentación y colaboración.

Rúbrica de Evaluación (Ejemplo simplificado)

Criterios

Excelente (4)

Bueno (3)

Satisfactorio (2)

Necesita mejorar (1)

Claridad en las explicaciones

Explica con precisión, usando ejemplos claros

Explica bien, con algunos ejemplos

Explicación algo confusa o incompleta

No explica correctamente

Uso de estrategias

Utiliza múltiples estrategias eficazmente

Usa estrategias correctas

Estrategias limitadas o ineficaces

Estrategias incorrectas o ausentes

Creatividad y presentación

Muy creativa y bien presentada

Atractiva y clara

Aceptable, con algunos errores

Poco creativa o desorganizada

Aplicación en problemas reales

Resuelve problemas complejos con autonomía

Resuelve bien los problemas

Problemas sencillos, con ayuda

Dificultades para aplicar conocimientos


Este plan promueve un aprendizaje profundo, crítico y significativo, alineado con los principios de la Nueva Escuela Mexicana, favoreciendo la autonomía, la colaboración y la transferencia de conocimientos en contextos reales.

Descargar Word