Cuestionario sobre Proporcionalidad inversa
1. Si y es inversamente proporcional a x y cuando x aumenta en un 50% y y disminuye en un 33%, ¿cuál es la relación inicial entre x e y?
A) y = k/x con k = 100
B) y = k/x con k = 150
C) y = kx con k = 100
D) y = kx con k = 150
2. Si en una relación de proporcionalidad inversa, cuando x = 8, y = 6, ¿cuál será el valor de y cuando x sea 12?
A) 3
B) 5
C) 4
D) 2
3. En una situación de proporcionalidad inversa, si el producto de x e y es constante y x aumenta de 4 a 10, ¿qué sucede con y si inicialmente y = 15?
A) y aumenta a 40
B) y disminuye a 6.0
C) y aumenta a 30
D) y disminuye a 6
4. Supón que y es inversamente proporcional a x, y = 20/x. ¿Cuál es el valor de y cuando x = 5?
A) 25
B) 5
C) 4
D) 10
5. Si en una relación inversa, cuando y = 9, x = 3, ¿cuál será el valor de x cuando y sea 6?
A) 18
B) 4.5
C) 3.5
D) 2
6. En un problema de proporcionalidad inversa, si el trabajo total se mantiene constante y se tarda 8 horas en completar una tarea con 2 operarios, ¿cuánto tiempo tardarán 4 operarios en realizar la misma tarea?
A) 16 horas
B) 2 horas
C) 8 horas
D) 4 horas
7. Dado que y es inversamente proporcional a x, y = 12/x. ¿Qué valor tendrá y si x se reduce a la mitad?
A) 24
B) 6
C) 3
D) 12
8. Si en una relación inversa, y = k/x y se sabe que cuando x= 10, y = 5, ¿cuál es el valor de y cuando x = 20?
A) 4
B) 10
C) 2.5
D) 1.5
9. En un escenario de proporcionalidad inversa, si el tiempo necesario para completar un trabajo es inversamente proporcional al número de trabajadores y con 5 trabajadores tarda 10 horas, ¿cuánto tardará en terminarse con 10 trabajadores?
A) 20 horas
B) 15 horas
C) 5 horas
D) 8 horas
10. Supón que y es inversamente proporcional a x, y = 30/x. ¿Cuál será y si x aumenta en un 25%?
A) 20
B) 24
C) 36
D) 15
Comprobar respuestas
Descargar Cuestionario